

AFRL-IF-RS-TR-2005-86

Final Technical Report
March 2005

SECURITY ENHANCED
MULTI-DOMAIN NETWORK MANAGEMENT FOR
JOINT WARRIOR INTEROPERABILITY
DEMONSTRATION (JWID)

Dolphin Technology, Incorporated

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2005-86 has been reviewed and is approved for publication

APPROVED: /s/

SCOTT S. SHYNE
Project Engineer

 FOR THE DIRECTOR: /s/

JOSEPH CAMERA, Chief
Information & Intelligence Exploitation Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
MARCH 2005

3. REPORT TYPE AND DATES COVERED
Final Jun 03 – Dec 04

4. TITLE AND SUBTITLE
SECURITY ENHANCED MULTI-DOMAIN NETWORK MANAGEMENT FOR
JOINT WARRIOR INTEROPERABILITY DEMONSTRATION (JWID)

6. AUTHOR(S)
James Marcinkowski and
Roger Miller

5. FUNDING NUMBERS
C - F30602-01-D-0167/0017
PE - 23761F
PR - 2183
TA - QB
WU - 17

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Dolphin Technology, Incorporated
474 Phoenix Drive
Rome New York 13441-4911

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/IFEB
525 Brooks Road
Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2005-86

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Scott S. Shyne/IFEB/(315) 330-4819/ Scott.Shyne@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
Today, computer networks are a vital communications tool, central to the day-to-day operations of the facility. To assist
administrative personnel in maintaining and monitoring a computer network, commercial network management tools are
used that collect data regarding network functionality and availability to assist in recording and visualizing the current
state of the network. These tools most commonly use the Simple Network Management Protocol (SNMP) to
communicate with all network-attached devices. Often a site will contain several networks, each running at a different
security level. Each network must be managed individually due to security regulations which require separation of the
networks. Personnel responsible for multiple networks currently are not able to view the operational status of a specific
network without physically sitting at the network management station (NMS) dedicated to that network. Administrators
have expressed a need to form a "network common operational picture" (NCOP) showing the status of all networks in
the same view. The Security-Enhanced Multi-Domain Network Management project (SE-MDNM) was established to
develop an SNMP proxy to serve as a management boundary device. Such boundary devices are used to connect
multiple networks of varying security levels to a single, secure network containing a centralized network management
station.

15. NUMBER OF PAGES
27

14. SUBJECT TERMS
Simple Network Management Protocol, SNMP, ICMP, Network Management Station,
NMS, Packet, Request, Response 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Table of Contents
1. Introduction... 1

2. SE-MDNM Software Architecture.. 2
2.1 Configuration .. 2
2.2 Interface Design .. 3

2.2.1 The SNMP Architecture ... 4
2.2.2 Internal Interfaces ... 7

2.3 Message Sequence Overview ... 10
2.3.1 NMS Message Flow Details ... 11
2.3.2 SNMP Get Request Message Flow... 14

3. Summary.. 20
3.1 Current SE-MDNM Prototype Capabilities.. 20
3.2 Current SE-MDNM Prototype Limitations .. 20
3.3 Recommendations... 21

3.3.1 SE-MDNM Thread Recommendations... 21
3.3.2 SE-MDNM Client Recommendations .. 21

 i

List of Figures
Figure 2-1: SE-MDNM Network Architecture.. 3
Figure 2-2: ISSE Guard TCI Internal and External Interfaces .. 4
Figure 2-3 Spectrum Message Flow .. 11
Figure 2-4 ICMP Echo Request Packet Captured with Snoop .. 12
Figure 2-5 Format of ICMP Packet .. 12
Figure 2-6 Message Format of Message Sent to SNMP Trusted Process 14
Figure 2-7 SNMP Get Request Packet Captured with Snoop.. 16
Figure 2-8 Message Queue Message Format... 17
Figure 2-9 SNMP Trap Captured with Snoop ... 18

List of Tables
Table 2-1 SMNP Message Type Processing.. 15

 ii

1. Introduction
This report, entitled Security Enhanced Multi-Domain Network Management (SE-MDNM) Final
Technical Report, documents the software architecture, summary, and recommendations
resulting from the SE-MDNM effort for the Secure Trusted Automated Routing (STAR) Guard
Server v1.0 software components as they will be used within the STAR Guard architecture. This
report fulfills Contract Data Requirements List (CDRL) Item A012 under Contract No.
F30602-01-D-0167/0017, Subcontract No DB21II-SC-02-005, DO9026-5000.

1

2. SE-MDNM Software Architecture
At military sites today, computer networks are a vital communications tool, central to the day-to-
day operations of the facility. To assist administrative personnel in maintaining and monitoring a
computer network, commercial network management tools are used that collect data regarding
network functionality and availability to assist in recording and visualizing the current state of
the network. These tools most commonly use the Simple Network Management Protocol
(SNMP) to communicate with all network-attached devices.

Often a site will contain several networks, each running at a different security level. Each
network must be managed individually due to security regulations which require separation of
the networks. Personnel responsible for multiple networks currently are not able to view the
operational status of a specific network without physically sitting at the network management
station (NMS) dedicated to that network. Administrators have expressed a need to form a
“network common operational picture” (NCOP) showing the status of all networks in the same
view.

The Security-Enhanced Multi-Domain Network Management project (SE-MDNM) was
established to develop an SNMP proxy to serve as a management boundary device. Such
boundary devices are used to connect multiple networks of varying security levels to a single,
secure network containing a centralized network management station.

2.1 Configuration
The SE-MDNM module supports the network connection of a single Network Management
Station (NMS) to the high side of the Information Support Server Environment (ISSE) Guard
utilizing an Out-of-Band (OOB) connection detailed in Figure 2-1. This configuration requires
the NMS to have a dedicated network interface connected exclusively to the high side interface
of the ISSE Guard. Other network interfaces may be installed on the NMS for connection to one
or more high side networks operating at the same security level. Routing on the NMS must be
configured to provide all network traffic destined for the low side networks to be routed through
the OOB connection to the ISSE Guard (Note: there cannot be a router or switch between NMS
and ISSE Guard). One or more low side networks may be connected to the low side of the ISSE
Guard, limited only by the number of network interface cards the ISSE Guard hardware platform
can support. The high and low side SE-MDNM client processes must be located on the ISSE
Guard platform to provide enhanced security to guarantee the integrity of the Internet Control
Message Protocol (ICMP) and Simple Network Management Protocol (SNMP) packets being
passed through the ISSE Guard.

2

Figure 2-1: SE-MDNM Network Architecture

2.2 Interface Design
The internal interfaces shown in Figure 2-2 facilitate communication between the primary
software applications comprising the ISSE Guard SE-MDNM module and the external interfaces
to the interconnected domains. These interfaces are required or impacted by this effort and
therefore are featured in the design. For details regarding the internal interfaces between ISSE
software configuration items, refer to existing ISSE Guard design specifications.

3

STAR Guard

SNMP Client High to Low Thread SNMP Client

SNMP Client Low to High Trusted SNMP Client

ICMP Client High to Low Trusted ICMP Client

ICMP Client Low to High Trusted ICMP Client

TRAP Client Low to High Trusted TRAP Client

Low Side
Devices

High Side
NMS

STAR Guard

SNMP Client High to Low Thread SNMP Client

SNMP Client Low to High Trusted SNMP Client

ICMP Client High to Low Trusted ICMP Client

ICMP Client Low to High Trusted ICMP Client

TRAP Client Low to High Trusted TRAP Client

Low Side
Devices

High Side
NMS

Figure 2-2: ISSE Guard TCI Internal and External Interfaces

All communication between the NMS and the ISSE Guard will be through standard network
protocols consisting of SNMP packets and ICMP packets. Except for SNMP GetBulkRequests
and SNMP v2 Traps, SNMP versions 1.0, 2.0, 2.0c and 3.0 packets will be supported in this
release.

2.2.1 The SNMP Architecture

Implicit in the SNMP architectural model is a collection of network management stations and
network elements. Network management stations execute management applications that monitor
and control network elements. Network elements are devices such as hosts, gateways, and
terminal servers that have management agents responsible for performing the network
management functions requested by the network management stations. The SNMP is used to
communicate management information between the network management stations and the agents
in the network elements.

The SNMP models all management agent functions as alterations or inspections of variables.
Thus, a protocol entity on a logically remote host interacts with the management agent resident
on the network element in order to retrieve (get) or alter (set) variables. This strategy has the
effect of limiting the number of essential management functions realized by the management
agent: an operation to assign a value to a specified configuration or other parameter and another
operation to retrieve such a value. A limited number of unsolicited messages (traps) guide the
timing and focus of the polling. SE-MDNM supports the five Protocol Data Units (PDU)s:
GetRequest-PDU, GetNextRequest-PDU, GetResponse-PDU, SetRequest-PDU, and Trap-PDU.

4

2.2.1.1 SNMP Message Format

Communication among protocol entities is accomplished by the exchange of messages, each of
which is entirely and independently represented within a single User Datagram Protocol (UDP)
datagram using the basic encoding rules of Abstract Syntax Notation One (ASN.1). All messages
consist of a version identifier, a community name for non SNMP v3 messages, and a PDU. In the
case of SNMP v3 messages, a message may contain additional security measures including
message authentication via MD5 or SHA1 hashing and possibly PDU encoding via Cipher Block
Chaining-Data Encryption Standard (CBC-DES) encryption. A protocol entity receives messages
at UDP port 161 on the host with which it is associated for all messages, except for those that
report traps (i.e., all messages except those which contain the Trap-PDU). Messages which
report traps should be received on UDP port 162 for further processing. An implementation of
this protocol need not accept messages whose length exceeds 484 octets.

In the case of SNMP v3.0 messages, there are three security levels that SNMP v3.0 PDU
messages may travel while going from the host NMS through the Guard and then to the target
device and back again. The following provides details regarding the three SNMP v3.0 security
levels and how the Guard handles the various SNMP v3.0 security levels it can encounter while
processing a SNMP v3.0 message.

The NMS sends out SNMP v3.0 messages that, depending on the configured security level, may
have one of three levels of security:

1. No Authentication and No Encryption (i.e. no security)

2. MD5 or SHA1 Authentication and No Encryption (moderately secure)

3. MD5 or SHA1 Authentication and CBC-DES Encryption (most secure)

The security level of the message and the user name of the sender are both embedded in the
message header. When the message arrives at the Guard, it is parsed. After the security level and
username have been parsed out of the message, it accesses the snmpv3users fact base file for
data specific to the parsed out username. Based on the user name that was parsed out of the
SNMP v3.0 message, the appropriate password is extracted from the snmpv3users file. The
password received from the fact base file should allow authentication and decryption of the
message. If the extracted password does not allow validation, the authentication and/or
encryption of the message is rejected.

As mentioned above, to facilitate the three levels of SNMP v3.0 security, the Guard keeps a file
on the trusted platform called snmpv3users.fb. The trusted thread has access to this file and reads
it in upon start up. The file contains the usernames and associated passwords used for facilitating
both encryption and authentication of snmpv3 messages. The file itself is secured by having a
SHA 1 checksum applied to it.

5

2.2.1.1.1 SNMP Managed Object Definition

The definition of managed objects can be broken down into three attributes:

1. Name: The name, or Object Identifier (OID), uniquely defines a managed object;
SE-MDNM only supports the numeric form of OID's

2. Type and Syntax: A managed objects datatype is defined using a subset of
ASN.1. ASN.1 is a way of specifying how data is represented and transmitted
between managers and agents, within the context of SNMP

3. Encoding: A single instance of a managed object is encoded into a string of
octets using the Basic Encoding Rules (BER). BER defines how the objects are
encoded and decoded so they can be transmitted over a transport medium such as
Ethernet

2.2.1.2 SNMP Data Types

This section describes the SNMP data types supported by the SE-MDNM module.

Integer: A 32-bit number often used to specify enumerated types within the
context of a single managed object. For example, the operational status of a router
interface can be up, down, or testing. With enumerated types, 1 would represent
up, 2 down and 3 testing. According to RFC 1155, the value zero (0) must not be
used as an enumerated type.

Octet String: A string of zero or more octets (more commonly known as bytes)
generally used to represent text strings; occasionally used to represent physical
addresses.

Counter: A 32-bit number with minimum value 0 and maximum value of
4,294,967,295. When the maximum value is reached, it wraps back to zero and
starts over. It is primarily used to track information such as the number of octets
sent and received on an interface or the number of errors and discards seen on an
interface. A Counter is monotonically increasing, in that its values should never
decrease during normal operation. When an agent is rebooted, all Counter values
should be set to zero. Deltas are used to determine if anything useful can be said
for successive queries of Counter values. A delta is computed by querying a
Counter at least twice in a row and taking the difference between the query results
over some time interval.

Object Identifier: Dotted decimal string that represents a managed object within
the object tree.

Sequence: Defines lists that contain zero or other ASN.1 data types.

6

Sequence of: Defines a managed object that is made up of a SEQUENCE of
ASN.1 types.

IpAddress: Represents a 32-bit IPv4 address.

NetworkAddress: Same as the IPAddress type, but can represent different
network address types.

Gauge: 32-bit number with minimum value 0 and a maximum value of
4,294,967,295. Unlike a Counter, a Gauge can increase and decrease at will, but it
can never exceed its maximum value.

TimeTicks: 32-bit number with minimum value 0 and a maximum value of
4,294,967,295. TimeTicks measure time in hundredths of a second.

Opaque: Allows any other ASN.1 encoding to be stuffed into an OCTET
STRING.

Integer32: Same as an INTEGER.

Counter32: Same as a Counter.

Gauge32: Same as a Gauge.

Unsigned32: Represents decimal values in the range of 0 to 4,294,967,295
inclusive.

Counter64: Similar to Counter32, but its maximum value is
18,446,744,073,709,551,615.

BITS: An enumeration of nonnegative named bits.

2.2.2 Internal Interfaces

This section describes the internal interfaces, or ‘STAR threads’, required for passing SNMP and
ICMP packets through the STAR Guard in both the high-to-low and low-to-high directions.

2.2.2.1 ICMP High-to-Low: High Side Client

The ICMP high-to-low, high side client uses libpcap version 0.8.1 for capturing all network
packets from the OOB connection to the NMS. For communication with the ICMP high-to-low,
high side client, shared memory is utilized for saving the following information contained in an
ICMP Echo Request Packet:

7

• Source IP address

• Destination IP address

• Key identifier for this packet

• Payload from this packet

The ICMP high-to-low, high side client uses the following STAR Application Programmer’s
Interface (API) functions to communicate with the ICMP high-to-low trusted process:

• ConnectStar()

• WriteStar()

• CloseStar()

2.2.2.2 ICMP High-to-Low: Low Side Client

The ICMP high-to-low, low side client uses the following STAR API functions to communicate
with the ICMP high-to-low trusted process:

• ConnectStar()

• ReadStar()

• CloseStar()

The ICMP high-to-low, low side client uses libnet version 1.1.1 functions to transmit the ICMP
Echo Request to the appropriate low side node.

2.2.2.3 ICMP Low-to-High: High Side Client

The ICMP low-to-high, high side client uses libnet version 1.1.1 functions to create the response
packet and return it to the high side NMS. The following STAR API functions are used to
communicate with the low-to-high trusted process:

• ConnectStar()

• ReadStar()

• CloseStar()

2.2.2.4 ICMP Low-to-High: Low Side Client

The ICMP low-to-high, low side clients use libpcap version 0.8.1 for capturing all network
ICMP packets from the low side network interface for which they are configured to listen.

8

The ICMP low-to-high, low side clients use the following STAR API functions to communicate
with the ICMP low-to-high trusted process:

• ConnectStar()

• WriteStar()

• CloseStar()

2.2.2.5 SNMP High-to-Low: High Side Client

The SNMP high-to-low, high side client uses libpcap version 0.8.1 for capturing all network
packets from the OOB connection to the NMS. For communication with the SNMP low-to-high,
high side client, shared memory is utilized for saving the following information contained in an
ICMP Echo Request Packet:

• Source IP address

• Destination IP address

• Key identifier for this packet

• Request id for SNMP Request
The SNMP high-to-low, high side client uses the following STAR API functions to communicate
with the SNMP high-to-low trusted process:

• ConnectStar()

• WriteStar()

• CloseStar()

2.2.2.6 SNMP High-to-Low: Low Side Client

The SNMP high-to-low, low side client uses libnet version 1.1.1 functions to transmit the SNMP
Requests to the appropriate low side node.

The SNMP high-to-low, low side client uses the following STAR API functions to communicate
with the SNMP high-to-low trusted process:

• ConnectStar()

• ReadStar()

• CloseStar()

9

The SNMP high-to-low, low side client uses a Message Queue to transmit SNMP responses to
the SNMP low-to-high, low side client. The SNMP response message from the Get Request to
the low side node is parsed into a snmppkt data structure. The snmpH2LlowClient places the
data contained in the data structure onto the message queue with a message type of 2. The format
of the data contained in the message queue is described in Figure 2-3.

2.2.2.7 SNMP Low-to-High: High Side Client

The SNMP high-to-low high side client uses the following STAR API functions to communicate
with the SNMP high-to-low process:

• ConnectStar()

• ReadStar()

• CloseStar()

2.2.2.8 SNMP Low-to-High: Low Side Client

The SNMP low-to-high, low side client uses a Message Queue to receive SNMP responses from
the snmpH2LlowClient. The snmpL2HlowClient waits for any messages with the message type
of 2 and pops them off the queue and delivers them to the SNMP low-to-high trusted process via
STAR API calls. See

Figure 2-3 for the format of the data contained in the message queue.

The SNMP low-to-high, low side client uses the following STAR API functions to communicate
with the SNMP high-to-low Thread:

• ConnectStar()

• WriteStar()

• CloseStar()

2.3 Message Sequence Overview
Figure 2-3 details the message flow generated by a Spectrum NMS managing a node on a low
side network. Spectrum will first attempt to ping the low side device (Step 1). Only if it receives
a successful reply will Spectrum proceed to Step 2 and send the SNMP Request to that device.

10

NMS HighNMS High High Client(s)High Client(s) Low Client(s)Low Client(s)High to Low ThreadHigh to Low Thread Low DevicesLow DevicesHigh to Low ThreadHigh to Low Thread

Ping Request

WriteSTAR(request)
ReadSTAR(ping)ReadSTAR(ping)

Forward Ping

Ping Reply
WriteSTAR(reply)

ReadSTAR(reply)
Proxy Ping Reply

SNMP Request

22

WriteSTAR(request)

Save Transaction

Filter MessageFilter Message

ReadSTAR(snmp)

Clean SNMP

SNMP Response

WriteSTAR(response)

ReadSTAR(response)

Proxy SNMP Response

11

Figure 2-3 Spectrum Message Flow

2.3.1 NMS Message Flow Details

The following sections detail the message flows associated with each message created by the
NMS to do a SNMP Get Request of a given node on a low side network. These descriptions are
organized by the component of the architecture which performs each processing step.

2.3.1.1 ICMP Echo Requests Message Flow

The following describes the message flow within the system to processes ICMP Echo Request
messages. This message, also known as a ping, is used to verify if a node is reachable. Figure 2-4
depicts an actual ICMP Echo Request packet captured using the Snoop utility, while Figure 2-5
graphically depicts the ICMP packet composition.

11

ETHER: ----- Ether Header -----
ETHER:
ETHER: Packet 1 arrived at 12:35:33.52
ETHER: Packet size = 98 bytes
ETHER: Destination = 0:3:ba:35:2d:11,
ETHER: Source = 0:3:ba:35:2d:79,
ETHER: Ethertype = 0800 (IP)
ETHER:
IP: ----- IP Header -----
IP:
IP: Version = 4
IP: Header length = 20 bytes
IP: Type of service = 0x00
IP: xxx. = 0 (precedence)
IP: ...0 = normal delay
IP: 0... = normal throughput
IP: 0.. = normal reliability
IP: Total length = 84 bytes
IP: Identification = 39790
IP: Flags = 0x4
IP: .1.. = do not fragment
IP: ..0. = last fragment
IP: Fragment offset = 0 bytes
IP: Time to live = 255 seconds/hops
IP: Protocol = 1 (ICMP)
IP: Header checksum = 32d2
IP: Source address = 192.168.42.2, 192.168.42.2
IP: Destination address = 192.168.2.21, 192.168.2.21
IP: No options
IP:
ICMP: ----- ICMP Header -----
ICMP:
ICMP: Type = 8 (Echo request)
ICMP: Code = 0 (ID: 1872 Sequence number: 0)
ICMP: Checksum = e542

Figure 2-4 ICMP Echo Request Packet Captured with Snoop

*(IHL) Internet Header Length

Version IHL Type of Service Total Length

Identification Flags

Header ChecksumProtocolTime to Live

Source Address

Destination Address

Options

Type Code Checksum

Sequence NumberIdentifier

Padding

Optional Data …

Fragment Offset

Version IHL Type of Service Total Length

Identification Flags

Header ChecksumProtocolTime to Live

Source Address

Destination Address

Options

Type Code Checksum

Sequence NumberIdentifier

Padding

Optional Data …

Fragment Offset

IP

ICMP

Figure 2-5 Format of ICMP Packet

12

NMS: The NMS will issue an ICMP Echo Request, which is received by the
ICMP high-to-low: high side client.

ICMP High-to-Low: High Side Client (icmpH2LhighClient): The
icmpH2LhighClient will capture this Echo Request and add entry in the
transaction table. Each transaction is unique and contains the original payload of
the ICMP packet. The client then creates and sends a message to the STAR Guard
containing the destination address and the original ICMP sequence number. This
sequence number will be used on the return trip to verify the transaction.

ICMP High-to-Low: Trusted Process (trusted_icmp): The ICMP trusted
process then forwards the Internet Protocol (IP) address and sequence number to
the low-side client. Because the original ICMP packet is not actually sent through
the STAR Guard, no filtering is necessary. The original payload is stored only on
the high side, in the form of an outgoing transaction. This information will be
used later to build a proxy Ping response.

ICMP High-to-Low: Low Side Client (icmpH2LlowClient): The
icmpH2LlowClient is continually waiting for messages (Ping Requests) to arrive
from the STAR Guard. When the message arrives, the icmpH2LlowClient uses
the destination address and sequence number (transaction key) from the message
to build a new Ping Request. The Libnet packet library is used to inject the newly
created packet onto the wire. Any responses from a Ping Request will be handled
by the low side client of the return thread.

2.3.1.2 ICMP Echo Responses Message Flow

The following describes the messages created and handled for transmitting the echo responses
from the low side nodes back to the high side NMS.

ICMP Low-to-High: Low Side Client (icmpL2HlowClient): For every network
interface on the low side of the STAR Guard, an icmpL2HlowClient is waiting to
capture Ping responses. Once an ICMP echo response is captured, the low side
client passes the ICMP portion of the packet to the trusted process via a
WriteSTAR() call . (See Figure 2-6)

ICMP Low-to-High: Trusted Process (trusted_icmp): As with the high-to-low
trusted process, the actual packet being forwarded from low-to-high will only be
used to build a similar Ping Response packet. Therefore, no filtering is required in
the trusted process and the ICMP portion of the response packet is passed though.

13

ICMP Low-to-High: High Side Client (icmpL2HhighClient): The
icmpL2HhighClient is also continually waiting for messages (Ping Responses) to
arrive from the STAR Guard. A Ping Response received from the STAR Guard
should contain a sequence ID that matches one of the Ping Requests currently
stored in the transaction map. If a transaction matching that ID cannot be found,
the packet is dropped and audited. If the message is a valid response to a previous
request, a new ICMP packet is created and returned to the high side NMS. The
“new” response packet is built using the original Ping Request data. Again, the
Libnet library is used to inject the packet onto the wire.

2.3.2 SNMP Get Request Message Flow

After the echo response has been received by the NMS, it will begin issuing the SNMP Get/Set
Requests. See Figure 2-6 for a sample SNMP Get Request packet.

Source Port

Source Address

Unused

Destination Address

Source Address Family

Destination PortDestination Address Family

Unused

Packet Length

SNMP Data…

Source Port

Source Address

Unused

Destination Address

Source Address Family

Destination PortDestination Address Family

Unused

Packet Length

SNMP Data…

Figure 2-6 Message Format of Message Sent to SNMP Trusted Process

14

SNMP High-to-Low: High Side Client (snmpH2LhighClient): The
snmpH2LhighClient uses libpcap functions to capture the SNMP Get/Set Request
and adds an entry into shared memory containing the source and destination
addresses, a unique key to retrieve this data, and the request ID from the request.
A message is created (Figure 2-6) and passed to the SNMP High-to-Low trusted
process with a WriteSTAR() call.

SNMP High-to-Low: Trusted Process (trusted_snmp): The trusted process
parses the data found in the high side shared memory segment into a snmppkt
structure. The ASN.1 data payload located in the snmppkt structure is then passed
out into a linked list of ASN.1 objects. The direction is checked (either high-to-
low or low-to-high) and the type of SNMP packet is validated to determine if
processing should be allowed for the direction the packet is going in. Table 2-1
shows the allowable and disallowable types for each direction.

Table 2-1 SMNP Message Type Processing

Snmp Type High-to-Low Low-to-High

Get Request Allowed Disallowed

Get Next Request Allowed Disallowed

Get Bulk Request Disallowed Disallowed

Get Response Disallowed Allowed

Set Request Allowed Disallowed

Trap Disallowed Allowed

Validation of the packets can fail if any of the following conditions exist:

• The SNMP type is disallowed in the direction the packet is going,

• The packet is of type Get Request or Get Next Request and values are not null for the
OIDs contained in the packet,

• In the case of SNMP v3.0 message, if the message can not be authenticated or
decrypted

If validation of the packet type fails, the packet is put into an error queue, the event is audited
and all processing of the packet is terminated. After the packet data has been validated, the
trusted process then sends the Get Request to the SNMP high-to-low: low side client
(snmpH2LlowClient).

15

ETHER: ----- Ether Header -----
ETHER:
ETHER: Packet 13 arrived at 12:35:53.34
ETHER: Packet size = 82 bytes
ETHER: Destination = 0:3:ba:35:2d:11,
ETHER: Source = 0:3:ba:35:2d:79,
ETHER: Ethertype = 0800 (IP)
ETHER:
IP: ----- IP Header -----
IP:
IP: Version = 4
IP: Header length = 20 bytes
IP: Type of service = 0x00
IP: xxx. = 0 (precedence)
IP: ...0 = normal delay
IP: 0... = normal throughput
IP: 0.. = normal reliability
IP: Total length = 68 bytes
IP: Identification = 35321
IP: Flags = 0x4
IP: .1.. = do not fragment
IP: ..0. = last fragment
IP: Fragment offset = 0 bytes
IP: Time to live = 255 seconds/hops
IP: Protocol = 17 (UDP)
IP: Header checksum = 4446
IP: Source address = 192.168.42.2, 192.168.42.2
IP: Destination address = 192.168.2.22, 192.168.2.22
IP: No options
IP:
UDP: ----- UDP Header -----
UDP:
UDP: Source port = 32878
UDP: Destination port = 161
UDP: Length = 48
UDP: Checksum = 9BDC

Figure 2-7 SNMP Get Request Packet Captured with Snoop

SNMP High-to-Low: Low Side Client (snmpH2LlowClient): The
snmpH2LlowClient receives the Get Request by calling ReadSTAR() once it is
notified that the socket connection to the thread has data waiting to be read. Using
libnet functions, the snmpH2LlowClient sends the Get Request to the low side
node.

2.3.2.1 SNMP Get Responses Message Flow

The following describes the messages created and handled for transmitting the SNMP Get
Responses from the low side nodes back to the high side NMS.

16

SNMP High-to-Low: Low Side Client (snmpH2LlowClient): After the snmpH2LlowClient
sends a Get Request off to a low side node it waits for a get response from the low side node.
Upon receiving a response the snmpH2LlowClient places an entry in the message queue for the
SNMP Low-to-High Low Client (snmpL2HlowClient). Figure 2-8 describes the format of the
data contained on the message queue for delivery to the snmpL2HlowClient.

Source Port

Source Address

Destination Address

Source Address Family

Destination PortDestination Address Family

Unused

Packet Length

SNMP Data…

Message Type

Source Port

Source Address

Destination Address

Source Address Family

Destination PortDestination Address Family

Unused

Packet Length

SNMP Data…

Message Type

Figure 2-8 Message Queue Message Format

SNMP Low-to-High: Low Side Client (snmpL2HlowClient): The
snmpL2HlowClient retrieves the get response message from the message queue
and creates a message. It then parses the get response to the SNMP low-to-high
trusted process by calling WriteSTAR(). (See Figure 2-8 for the format of a
message).

SNMP Low-to-High: Trusted Process: The trusted process parses the message
received from the snmpL2HlowClient into a snmppkt structure. The asn1 data
payload located in the snmppkt structure is then passed out into a linked list of asn1
objects. The direction is checked (either high-to-low or low-to-high) and the type of
SNMP packet is validated for allowable processing for the direction the packet is
going in. If validation of the packet type fails, the packet is put into an error queue,
the event is audited, and all processing of the packet is terminated. If validation
passes, and the packet is going from low-to-high, then the trusted process sends the
Get Response to the SNMP low-to-high, high side client (snmpL2HhighClient).

17

SNMP Low-to-High: High Side Client: The snmpL2HhighClient parses out the
Get Response from the message received from the trusted process. The original
port number is retrieved from the inter-thread inter-process communication (ipc)
shared memory. The destination port number is then set to the original port
number. The client creates and sends the Get Response packet to the NMS using
libnet functions to complete the SNMP Get Request/Get Response process.

2.3.2.2 SNMP Traps Message Flow

The following describes the messages created and handled for transmitting the SNMP traps from
the low side nodes to the high side NMS:

Low Side Nodes: The low side nodes are configured to send any SNMP Traps to
the appropriate low side network interface of the ISSE Guard (see Figure 2-9 for a
trap example).

ETHER: Packet 1 arrived at 9:38:17.57
ETHER: Packet size = 125 bytes
ETHER: Destination = 0:3:ba:8:57:67,
ETHER: Source = 0:90:fb:8:9b:ae,
ETHER: Ethertype = 0800 (IP)
ETHER:
IP: ----- IP Header -----
IP:
IP: Version = 4
IP: Header length = 20 bytes
IP: Type of service = 0x00
IP: xxx. = 0 (precedence)
IP: ...0 = normal delay
IP: 0... = normal throughput
IP: 0.. = normal reliability
IP: Total length = 111 bytes
IP: Identification = 0
IP: Flags = 0x4
IP: .1.. = do not fragment
IP: ..0. = last fragment
IP: Fragment offset = 0 bytes
IP: Time to live = 63 seconds/hops
IP: Protocol = 17 (UDP)
IP: Header checksum = 7870
IP: Source address = 192.168.64.117, roger
IP: Destination address = 192.168.1.72, MDNM-HI.dolphtech.com
IP: No options
IP:
UDP: ----- UDP Header -----
UDP:
UDP: Source port = 32788
UDP: Destination port = 162
UDP: Length = 91
UDP: Checksum = C615

Figure 2-9 SNMP Trap Captured with Snoop

18

TRAP Low-to-High: Low Side Client: The Trap low-to-high, low client
(trapL2HlowClient) binds to the UDP 162 port on the ISSE Guard’s low side network
interface and waits for trap messages.

TRAP Trusted Process (trusted_snmp): The trusted process parses the message
received from the trapL2HlowClient into a snmppkt structure. The asn1 data payload
located in the snmppkt structure is then parsed out into a linked list of asn1 objects. If
validation of the packet type fails, the packet is put into an error queue, the event is
audited, and all processing of the packet is terminated. If validation passes, the trusted
process then sends the trap to the TRAP low-to-high, high side client
(trapL2HhighClient).

TRAP Low-to-High: High Side Client: The trapL2HhighClient parses out the trap from
the message received from the trusted process, creates a trap packet, and sends the trap
packet to the NMS using libnet functions to complete the SNMP trap process.

NMS: Upon reception of a trap, the NMS will initiate the appropriate SNMP Get/Set
Requests to the affected low side node.

19

3. Summary
The following sections describe the current capabilities and limitations of the current SE-MDNM
design along with the recommendations for further enhancement of the capabilities provided by
SE-MDNM.

3.1 Current SE-MDNM Prototype Capabilities
Each component of the SE-MDNM system has been prototyped and is functional within a certain
demonstrable scope. These components include the SE-MDNM STAR threads and the
SE-MDNM clients. The SE-MDNM STAR module can support any generic SNMP v1.2 or v3
traffic from low-to-high and high-to-low. SNMP traps are also supported only in the low-to-high
direction. ICMP support is provided for Echo Requests and Echo Responses. This not only
allows for monitoring, but also management of low side nodes from a single high side network
management station. Any network management software application which utilizes only
standard SNMP requests can be supported as the high side network management station.
Currently the SE-MDNM capability has been tested against Aprisma Spectrum, Hewlett Packard
OpenView and open source OpenNMS network management software using both MIMIC
SNMP node emulators to create virtual nodes and net-snmp on real nodes.

3.2 Current SE-MDNM Prototype Limitations
The current limitations of the SE-MDNM module are current SE-MDNM clients must be located
on the same platform that the STAR Guard is located. This may or may not be a limitation,
depending on the level of security required for the client software. It was determined that the
clients would be more secure being located on a Trusted Solaris™ platform rather than located on
external platforms from the STAR Guard.

The current schema provides for any well formatted and allowed type of SNMP packet to be
transferred across the security boundary. Currently there is no capability to restrict the SNMP
traffic to a specific subset of OID’s to control the traffic allowed to pass across the security
boundary. SNMP packets are checked for compliance to the data types allowed in a well formed
SNMP packet, but limitations are not defined as to the content of the data type (e.g., if it should
be a certain range of values).

If support is required for a large number of low side networks, the current design is cumbersome
to start and stop all the processes required for the SE-MDNM capability. For each low side
network interface, 25 distinct processes are required to handle all the ICMP and SNMP traffic.
Of these 25 processes, 15 have to be started and stopped through the STAR Admin Graphical
User Interface (GUI) and SE-MDNM Client GUI provided. If the processes are not ended
properly, manual activity may be required to clean up some of the inter-process communication
structures prior to re-starting the SE-MDNM capability.

20

3.3 Recommendations
The following sections recommend actions which should be performed during a follow-on effort
to enhance the functionality and security of the SE-MDNM capabilities.

3.3.1 SE-MDNM Thread Recommendations

It is recommended to develop a capability to allow for specification of only a subset of OIDs to
be allowed to pass across the boundary. This would be accomplished, by a site-by-site basis, only
those MIBs which are required for their network nodes. The SE-MDNM module would provide
processes which would create a fact base based on the contents of the required MIBs. This would
limit the allowable SNMP traffic to a well defined subset but would allow the monitoring and
management of all the nodes located on the site’s network. Not only would this limit the traffic
to a limited number of OIDs, the acceptable values or ranges of values would be able to be
controlled by the information retrieved from the MIBs.

In combination with an improved GUI for the clients, an improved admin GUI should be
developed to make it easier to manage the potentially large number of STAR Guard threads
required for multiple low side networks. The capability to select a set of threads to start or stop,
instead of the current capability which only allows starting and stopping of one or all of the
threads, would enhance the thread administration.

3.3.2 SE-MDNM Client Recommendations

It is recommended that improvements be made to the management, extensibility and architecture
of the SE-MDNM client mechanism. Every new message format requires four new proxy clients
(two for each direction); more if multiple low-side security labels are to be supported. In real
world scenarios this will maximize quickly the number of proxy clients to manage as the STAR
Guard continues to support more and more message formats. An improved client management
mechanism should therefore be created. This mechanism would allow for the starting, stopping
and management of any number of clients. The same interface would also provide a more
comprehensive traffic visualization mechanism which could collect and display statistics, inspect
messages, and provide real-time client feedback.

The need to rapidly create and deploy new proxy clients is also related to the continued growth
of supported message types. Much has been found out in the first phases of the SE-MDNM
which could allow for the creation of a STAR client “framework”. This higher level framework
could provide improvements in both client development and runtime client management. From a
development standpoint, a “STAR Client Framework” could provide an abstract programming
API which would remove almost all of the STAR Guard specific knowledge from the client
developer. The developer would simply extend their clients from a few core classes in the
framework and provide message specific code to suit their needs.

21

From a runtime client management standpoint, the framework would guarantee that all clients
adhere to a well known interface for the starting, stopping and monitoring of their associated
threads. This, combined with an Extensible Markup Language (XML) configuration file, would
allow a “Client Manager” to manage numerous clients without the need for any client specific
information. An XML-based configuration file will also allow the STAR Guard to properly
create the environment in which the client needs to run and provide a more dynamic client
configuration environment.

Moving from what was essentially a command line interface to a graphical client management
system would require an overall architecture change to the SE-MDNM clients. Most graphical
user interfaces are event based. Moving to event-based architecture would provide a number of
benefits:

• It would eliminate the existing configuration issues related to current interprocess
client communication mechanisms

• It would provide a simple means by which to gather real time client and traffic
information

• It would allow for a much more efficient use of threads instead of processes

Aside from the fact that threads are a fast lightweight alternative to processes, the Solaris kernel
is optimized to take advantage of the thread process model.

22

	Introduction
	SE-MDNM Software Architecture
	Configuration
	Interface Design
	The SNMP Architecture
	SNMP Message Format
	SNMP Managed Object Definition

	SNMP Data Types

	Internal Interfaces
	ICMP High-to-Low: High Side Client
	ICMP High-to-Low: Low Side Client
	ICMP Low-to-High: High Side Client
	ICMP Low-to-High: Low Side Client
	SNMP High-to-Low: High Side Client
	SNMP High-to-Low: Low Side Client
	SNMP Low-to-High: High Side Client
	SNMP Low-to-High: Low Side Client

	Message Sequence Overview
	NMS Message Flow Details
	ICMP Echo Requests Message Flow
	ICMP Echo Responses Message Flow

	SNMP Get Request Message Flow
	SNMP Get Responses Message Flow
	SNMP Traps Message Flow

	Summary
	Current SE-MDNM Prototype Capabilities
	Current SE-MDNM Prototype Limitations
	Recommendations
	SE-MDNM Thread Recommendations
	SE-MDNM Client Recommendations

